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SUMMARY

This report describes the development of a mathematical model for
gunner's tracking performance in MIQ Mode II tracking task which is a
linear time-varying antiaircraft artillery system. The Luenberger observer
theory is used to design the gunner model which is composed of three
elements--a reduced-order observer, a feedback controller, and a remnant
element. An important feature of the model is that its structure is
simple, hence the computer simulation of man-in-the-loop AAA tracking
systems using the gunner model requires only a short execution time. A
parameter identification program based on the combined least squares curve-
fittirg method and the modified Gauss Newton gradient algorithm is developed
to determine parameters of the model systematically. Model predictions of
both azimuth and elevation tracking errors for several target flyby and
manuevering trajectories are shown to be in excellent agreement with the
empirical data obtained from manned AAA simulation experiments conducted at
the Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. It
is concluded that the antiaircraft gunner model based on the observer
theory can be accurately and efficiently used to study AAA weapon effective-

ness and aircraft survivability.
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SECTION I

INTRODUCTION

The Manned-Systems Effectiveness Division of the Aerospace Medical
Research Laboratory (AMRL/ME), WPAFB, Ohio, performs research on the gunner's
tracking response in Anti-Aircraft Artillery (AAA) systems. To analyze the
performance of an AAA system, a mathematical gunner model representing the
control characteristics of the gunner in the compensating tracking task is

required. Several human operator models have been developed:

1. DMcRuer Crossover Model [1] - based on classical control theory,

2. Optimal Control Model {2], [3], [4] - based on optimal contcol and

estimation theory,

3. PID Structure Modified Optimal Control Model [5] - Simplified Optimal
Control Model.
A brief comparison of these models can be found in Appendix A. Although

most of these models can predict tracking errors, they either have a ~omplicated

model structure and/or it is difficult to determine values for the model

parameters for a given weapon system.

p

We wish to design a model whose structure is simple, whose parameters could
be identified systematically, whose computer implementation would be fast and

efficient, and whose cutput would accurately describe the tracker's response

o o TSI P

characteristics.

This report presents an AAA gunner model based on the Luenberger observer
theory [6], [7]1, [8]. The observer theory provides a new method to obtain an
approximate estimation for the state of an observed syscem. The characteristics
of an observer are somewhac free to the extent that they can be determined by
the designer through the proper selection of an observer gain. There is no
Riccati equation involved in the observer design. The simplicity of the observer

design and its capability for state estimation maka the observer theory an

Ty e YT LSS 7+ PR s e S




attractive design method. Then the estimated state vector can be used to
implement a linear state variable feedback controller which represents the
gunner's tracking function. Furthermore, it is assumed that the effects of

all randomness sources in the AAA closed loop system can be lumped into one
remnant element. Therefore, the structure of this model is simple. In addition,
a parameter identification program based on least squares curve-fitting method
and the Gauss Newton algorithm [9] was developed for this model. Hence, its
parameters can be easily determined. A computer simulaticn program OMS
ggbserver.§ode1‘§imulation) of the AAA tracking task using this model was also

developed. Simulation resuits showed that the model predictions of the tracking

errors were in excellent agreement with the actual gunner response data of the
manned AAA simulation conducted at the Aerospace Medical Research Laboratory,
WPAFB, Ohio. The computer execution time of the AAA simulation using this
simple model is very fast. The description of a AAA gun system and the design
of the observer model are included in Section II. Section III describes the
method to determine the model parameters. Discretization techniques for computer
implementation will be included in Section IV along with the computer simulation

results. The conclusion will be discussed in Section V.
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SECTION II

MODEL DEVELOPMENT

Description of An AAA Gun System

The tracking task of an auti-aircraft artillery (AAA) gun system can be
described by a closed loop block diagram as shown in Figure 1. Two
gunners, one each for azimuth and elevation axes, play the role of
controller in the man-machine feedback control system. From the visual

display, each gunner observed the tracking errore,, , which is the differ-

T
ence between the target position angle GT, and the gunsight angle © .
Independently, the gunners operated hand cranks to control the gunsight
system to align the gunsight angle (output) with the target position

angle (input). Therefore, the azimuth tracking task is decoupled from

the elevation tracking task in this AAA system. Four trajectories, Figure

2, of the target aircraft were used as input to the AAA system. These

trajectories are deterministic functions of time, although the gunners

.

do not know their dynamic properties, 0 BT, etc. 1In order to develop

T
a mathematical model of the gunner response characteristics in an AAA
compensatory tracking task, we first need to describe the mathematical
representations of the gunsight dynamics. Let us consider an AAA system
with the following gunsight transfer function.
9, © _ 64 (s + 1)
U (s) S(s2 + 123 + 64)

Based on frequency domain analysis of the inputs (target trajectories),

it was found that the frequency handwidths of all the trajectories in

Figure 2 are around 0.2 Hz. Thus, a simplified gunsight transfer
function
Bg (s) 1
z (1)
U (s) s

can be used for the model design and simulation analysis.
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Equation (1) is equivalent to Gg(t) = u(t), Furthermore, Figure 1 defines

the tracking error eT(t) to be GT(t) - Bg(t). The time derivative of eT(t)

is:
e (t) = ?T(t) - Gg(t)
= 8,(t) - u()
Now let us introduce state variables
xl(t) = eT(t) .
A
x,(t) = ep(t) = O.(x) - eg(t)

The time derivatives of these state variables are

x,(£) = 5T(t)

x,(t) = %, (€) = u(t)
Let x(t) be [xl(t), xz(t)]T. The state space equation of the gunsight
dynamics and target motion can be expressed as

x(t) = Ax(t) + Bu(t) + F.éT(t:) (2)

where A, B, and F are matrices defined as follows:

The scalars u and 5T are the control output of an AAA gunner and the target
acceleration respectively.
The tracker's observation of the tracking error is represented in the
measurement equation:
y(e) = Cx(t) (3) ,
where C is a row vector [ 0 1 ].
B.  Human Operator's Internal Model
To develop the observer model for the human operator's tracking response,
it is necessary to obtain his internal model of the controlled plant and
target motion, Figure 3. This internal model describes the understanding

or knowledge the gunner (i.e. human operator) has about the real system

6
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(including gunsight dynamics, display, control crank, and target motion).
For simplicity, it is assumed that the human operator's internal mcdel of
gunsight dynamics is identical to the mathematical model of gunsight

dynamics.

As mentioned, the tracker has irnformation about target trajectory BT
’

and maybe target velocity 9,, but not precise information of the target

T!

3

acceleration GT. Hence, the last term, 6 in Eq. (1) will not be included

T’
in the human operator's internal model of the system. This is the target
uncertainty problem whose effect will be included in a rCmnant element,

considered in the next section.

In addition, the observation noise which might be associated with

E% measured output y will not be considered explicitly. Its random effect will

also be included in the remnant element for simplicity. Therefore, the

: human operator's internal model of the system can be described as follows:

x, (£) = Ax, (t) + Bu(t)
-1 =1 ,
(4)
y(t) =Cx(t)
The state variable §1(t) of the internal model also has dimension two.
* C. Observer Model
An observer is itself a dynamic system whose function is to reconstruct the
state variable of a given system (in this case, the human operator's internal
model). An idenctity observer is an observer which has the same dynamic order
as the observed system. In this report, an identity observer is designed

to estimate the states of the gunsight and the target motion. The structure of

an identity observer used in our observer model design is:

z(t) = Az(t) + Bu (t) + K [y(t) - Cz(t)]

(A-KC)z(t) + Bu () + Ky(t) (5)
z(t) is the state variable of the observer with dimension two. This vector

represents the estimated value of the state variable x(t) and is used to fulfill

TN

F‘:!{

i

the state variable feedback controller. Matrices A,B, and C are as previously

8
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described. K is the observer gain vector. The dynamic response of the

observer is determined by the matrix A-KC. K is designed such that the

eigenvalues of A-KC have negative real parts (i.e. A-KC is a stable matrix).

Then the state of the observer will converge to the state of the observed

system. According to observer theory, there always exists a gain K such that

A-KC is stable if the system is observable. The definition of an observable
system can be formed in [10]. It can be shown that the system described by
Eq. (4) is observable. uc(t) in Eq.(5) is the feedback controller and is

defined as follows:
uc(t) = -Tz(t) (6)
where I' is the controller gain, a row vector with two elements. In Egs. (5)

and (6), the observer gain K and the controller gain @' will be determined by

a parameter identification program.

The relation between the control output u(t) of the human operator and
u (t) is:
¢

u(t) = uc(t) + v(t)

where v(t) is a random process called remnant element which represents all
the gunner-induced noises, (e.g., the effect of target uncertainty, the
observation noise, the neurcmotor noise, etc.) and modeling errors. The

idea tc lump all the random effects into the remnant element is to simplify

RRREL R B L L B R

the structure of the model. The statistical properties of the remnant v(t)
are:

E[v(t)) =0 for all t,
and -

¢))
Efv(t) vT(T)] = V(t)8(t-T) for all tandT.

where E[+] denotes the expectation value of *, 8§ is the Dirac delita function

Y

and V(t) is a function of time to be described in section III. A block diagram

of the structure of the observer model is shown in Figure 4. Let gﬂt) be the

H
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estimation error, i.e., e(t) = x(t) - z(t), then

e(r) = x(t) - i(r)
and from Eqs. (2) and (5)
é(t) = (A-KC)e(t) + Bv(t) + FéT(t) (8

K will be selected to make A-KC a stable matrix. Hence, e(t) will decrease

exponentially to zero with time. The mathematical model of the AAA closed

loop system which is composed of Eqs. (2) and (5) can be written as:

x(t) = (A-BT)x(t) + Ble(t) + Bv(t) + FéT(t)
é(t) = (A-KC)e(t) + Bv(t) + FéT(t) ©)
Let C
z(8) = x(®) | o, i
e(t)
r
A = A-T B[ | B, - L% and P, = {%
0 A-KC B }F
Then

g_l(c) = Algl(t) + Blv(t) + Flé,r(t) ao

Note that the system matrix Al of the above overall system is a triangular

matrix. Hence, the eigenvalues of this triangular matrix are the eigenvalues

of matrices A-BI' and A-KC. Now, if we choose a proper control gain matrix T

and observer gain marrix K to make A-BI' aud A-KC stable matrices then the

overall system .s sta%le. Furthermore, it can be shown that the design of

observer and the design of controller can be done separately. This simplifies

the design procedur~s. The mean of Eq. (10) is:

. .
z{&) Al_z_l(L)-i-FleT(t)

11)
where z,(t) = E[z; (0)].
The covariance of this equation is:
. _ T T
P(t) = AlP(t) + P(t)Al + B1V(t)Bl (12)

where P(t)= E[(Ei(t) - zl(t))(zi(t) - El(t))T]. The derivation of Eq. (12)

can be found in Reference [11].
11
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SECTION III

PARAMETER IDENTIFICATION METHOD

The structure of the gunner model has been designed, To implement this

work, we need to determine the values of the model parzmeters. A systematic

A
i

procedure has been developed (Figure 5). It involves an identification program

P

Sl danitia

%; based on the least squares curve-fitting method and the Gauss-Newton gradient
%é algorithm as described in Appendix B. One requirement of this technique is to
3
%ﬁ select a criterion function J(a) of the unknown parameters a to evaluate the
53 "goodness of fit'" between the model predictions from Eqs. (11) and (12) and the
&5
2 . . . . . ‘s .
%% empirical data obtained from the manned AAA simulation. Parameter identification
&
%? occurs iteratively by converging to a set of values for which the curves are
3|
§§ "reasonably' matched.
g%
%% Empirical data of the tracking error, eT(t), was collected at the Aerospace
&
%% Medical Research Laboratory, WPAFB, Ohio, from their manned simulator using
&
&1

RS

simulated target trajectory 6T as input. e, and SDT represent the sample ensemble

T

Bt

mean and standard deviation of the tracking errors over sixteen simulation runs

for a given team. In Eq. (11) the model prediction of the ensemble mean of the

-

XJ&W” i ’%&?f” .éa.’g%..;‘ TS

rvacking error, E} is loca*ted in the second component of Z&(t). It can also be

B

shown that the square root of the second diagonal element of the covariance matrix
P(t) in Eq. (12) is the predicted ensemble standard deviation of the tracking
error. The parameter identification was done in two parts (curve-fitting of the
ensemble mean and ensemble standard deviation of the tracking error). For both
parts, angular information was input only from Trajectory 4 of Figure 2.

In the first part, E& and E} are compared to determine the observer gain
K= [kl’ k2] and the controller gain I' = [Yl, YZ]' This comparison was actually
computed in frequency domain. The power spectral density function (PSD) of the
sample ensemble mean tracking error was calculated, Sgi(w). And the PSD, SE%(w),

of e/

r can be computed from the state representation of Z&(t) in Eq., (11). The

12

Wi o

W D AN i




A e e semsasvemweine "y

.
NTRRTLUD T AN A BN 1 IR WS SR AT\ T w_!g
-, E .

HIEDOUd ROILIVI LG LLNAQ] SHUBWHVA L 0 KYYOVIY AD0'1Y X A ) K]

HLA STEVIOS LSV L UOHLAN NOLMAN SSavD
- CNHLLHOY Y =1
SNOLLONAL NOLMALIL) INARISACGY NALNVYVA _ ;
. I
. .
: |
’ ¢
™
yod
THAOK ATINNTD
. AHL HLIM RALSAS vvy -
L, 40 NOLLVIORES ¥3LadkOD
.- _
f
—— 1 L 10¥ary K
Ca=-"as0y + ,.\. |
¢ {
.. ) 1
1a _ .
e~ YOLVIWIS vvv - i )
1, ; i
| 4

ot L . R Y a0 N L ST . . )
i R R L T
il




2

-

R

T

by

s
(b
Vi 4

it

4

T

T

u
Nk

S

Srntin ki

RS
ikt H-L"‘f':k

b
Eu

x mrcsw
RELPRLET AT

: =
R e

GBS R OIEN

SO PR % =
solution to this differential equation is:

7 (t) = SE o(e-T)F B_(1T)dt
=1 =w 1 T

(13)

where ¢(t) = EXP(Alt) is the transition matrix.

Then

() = L [0 (e-T) + ¢ (e-T)] 8, (T)dT as)
T =o "oy 23 T
where ¢ij(c) is the ijth element of the matrix ¢(t). The PSD of E}(t), denoted by

SE%(w) can be shown [10] to be

S— . 2 g . 2 gn
eq @) = |G2‘(Jw)l 0w + |623(3w>l 6, 1w)
2 2 g (15)
= [|G i + 16 (5« )
[l21hw” ;23QJ)|] (@

. s th
where SGT(m) is the PSD of GT(t) and Gij(jw) is the ij  element of the square £
matrix G(jw) which is defined:

G(s) = L [9(B)] (16)

i.e., G(s) is the Laplace transform of the transition matrix ¢(t) and s is the

=1
variable of the complex plane. It can be shown that G(s) = (sI-Al) hence can
be rewritten as:

G(S) = adJ (SI"A )

(17)
det (sI—A])

where I is the identity matrix, det and adj denote the determinant and adjoint
of a matrix respectively.

Furthermore, because of the structure of A , it can be shown that (see
1

reference [8])

_ adj (sI-A)
Gls) = ‘ (18)
det [sI-(A-Bl')] . det [sI-(A-KC)]
Hence
G (s) = L+ 18
21 s(s-Y )

Ys+yk +Y
Gzz(s) = 1 12 2

(s=y ) (s* +ks+k)
2 2 1

14
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Y, M Wy

L
Y

f

and

. = 1 19
le, Gl S (19)

2 2
2 (y w) + vk +7Y)
lczs(jw)l = ! 1.2 (20)

3 2 [k RV
lw - w(k1 - quz)] [( , Yz)w Y, l]

2
But, when w=0, |02 (jw)l is undefined unless Y1 = -1, Under this condition,
1

we row have
2 2
w +(y -k)
2 2

g
8, W) = . 6, (w) (21)
g, 2 2 2 2 T
o ~wk -vk) + [k ~yIo +vk]
1 2 2 2 2 21
Since we normalized all PDS's, this becomes
2
' (v, k) o .
S 21 = (22)
g (W) = —5-">I e ¢ B (
eT( ) (,YZ _ kz)z T'( )

Let a = [Yz’ kl, k2] with Yl = -1, then compute tne partial derivatives of

SéT'(w,g) with respect to a.

DSéT(w,‘g)
da

All the information is now ready for implementation of the curve fitting

program. The criterion function to be minimized is:
w

' ' 2
J(a) = fof [SET(O)) —Sé‘Tv(w, g_)] dw (23)

where wf is the frequency bandwidth of the target trajectory (input) and
t

SET(w) is the normalized PSD of the sample ensemble mean of the tracking error.

For the ccmputer program we used the discretized form

K 1
' 2
I@ % 2 0% () -5 My, ] M (24)
k=1

where Aw is the chosen increment between samples in the frequency domain and

W = kedw, we = KAw. The iterative equation to be solved by the program is

15
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g s ogeh

g R e el S ¥
T e R

SRS

' 5=,
4 = 8- ol T ¢ Feplw, a, yT ( 3 eT(wk, ai) 3 1
k=1 3 3
2 2
K Sme, a1 s s- ‘
. el , a, —~, _ :
{ kzl (___Taak =7 ) [ Tepw, a) - Teg(w) ] } (25)

o
where p is a step size factor defined in Appendix B. The values of m&?el

1
parameters obtained through the identification program are listed in Table 1

below:
AZIMUTH ELEVATION
Y -1 -1
1
Y2 -1.77 -1.877
k1 25 25
k 2.6 3.76
2
Table 1

Once these gains are determined, the system matrix is known. The second
part of curve fitting involves comparing the model prediction and the sample
ensemble standard deviation SDT of the tracking error. This part of the program
was computed in time domain.

To begin, we need the solution to Eq. (12). (See reference[11].)

P = 0, £) P ¢7 £) + JE 8,08 V@B T (6 0dx ©26)
0

Select P(t ) to be a diagonal matrix with diagonal elements dii’ i=1,2, **°, n.
0

Thus, the second diagonal element pzz(t) of the covariance matrix P(t) is

16
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n 2 tn n T
P (t) = ¢ dy ¢ (-t ) + S T L ¢ (t=1)B V(T)B ¢ (t-t)d1
22 jop tt2d 9 ¢ j=1i=1 2% 1 124
0
n 2 t 2 :
= - - - 2 £
izl g4, (=t )+ fm[tbzz(t 1) + ¢2“(c 1] V(ndr (27)

Since K and T’ are known and since Gzz(s) and qu(s) can be obtained from Eq. (19),

we need only take the inverse Laplace transform of these quantities to obtain:

9,, (&) = et

1 b iR

Uy e

- t -C -
¢2“(t) = -cle Y, +c1e 2%cos cst +ce2%inct (28)
4 3

ORI ARG 110 SR . O

with ¢, defined in Table 2 below

i
ot Sttt

i i
AZIMUTH ELEVATION
¢ 1.2 1.33
c 1.3 1.88
2
: c .26 b E
3 ;
5 c, 4.83 4.633
?‘{; :
£
H Table 2
? V(t) is the covariance matrix of the random remnant. It has been found that ;

the main source of tracking error is due to the gunner's uncertainty about the
target trajectory dynamics especially the target velocity éT and the target accel-

eration éT' Furthermore, study of the curve-fitting between the empirical data

PR I L PR Y

and the model prediction of the ensemble standard deviation of the tracking error
has indicated that the gunner's target motion uncertainty is the dominant part of

the random remnant term v(t). Therefore, it is proposed that the covariance

17
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¥
e, function V(t) of the remnant term be a function of the target dynamics as follows:
e A 2 o~ 2
V() =a +a 6. () +c 6. (t) 29)
1 2 T 3 T

~ A

where al, a and a3 are three nonnegative constants to be identified and 61 and GT
are estimated target angle rate and acceleration, respectively. The reason that

only estimated values 8, and 85 were used to represent target dynamics is that the

gunner doesn't have precise information about 6T and BT (i.e., target uncertainty

problem). These estimated quantities can be obtained as follows:

=(z) -(z) (30)
. 171 =1"3
i§ where zlis the state of the closed loop AAA system with the observer model, and
55
{z Cil)l and 651)3 are the first and third components of the vecor zl. Then by
o
Ead approximation:
g e = Ay -t
3 Tl T Bplh) ~ Opth (31)
At
where At is the sampling interval, tye = k * At. Let
= [ o o ], then in addition to P (t, b), we need
12 3 22 -
3 P (t,b)
22 =
3
Finally, the criterion function:
1 tf 2 2
J@®) = S [sp.(t)-P (t,b)]dt (32)
= ¢ T 22

0

For the computer program, a discretized form of the criterion function is used.

1 K
J(b)"Z[SDz(t)-P(t,h)]z'At (33)
T k=1 k

The iterative equation to be solved by the program is:

1

o (t,, b,))T.(apzz(ck,gi)) . z (3P, Gt T
k=1

3b 3b

2
b.,.=b.—p Z( 22(tk,t_n,i)—SDT(tk)

=i+l =i k=1

%
The values of model parameters obtained through the identification program

are listed in Table 3.

18
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AZIMUTH ELEVATION
al .001 .0005
o .025 .05
2
as .008 .0025
Table 3

A block diagram and computer program listings for each of the two parameter

identification parts (i.e., ensemble mean and ensemble standard deviation) can

be found in Appendix C.
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SECTION IV

COMPUTER SIMULATION RESULTS

Discretization of Observer Model Equations

To more efficiently use computer time and core, the observer model

equations were first discretized and then programmed.

So, given the continuous state variable equation (10), discretization

yields:
At At
z = eAIAtz + f Al(At s)F 6 (t-fs)ds + f eAI(At_$)
—n+1 -1 0
- At - . At _
ot eA,Atz + eA](At s)dS FO (t)+/ eAI(At s)
~n 0 1 T n 0
At . At
= eAlAtz + f eAlc do F 6 (t )+ [ eAlo do B v(t )
-n 0 1T n 0 1 n

Hence, we have the following difference equation:

ces +TEL
Zoap =02, F T 0y F T

where
6= MBEp o A MO o F =

1 a 1 2 0

At is the sampling period, eT,n = GT(tn), and v

the following propérties:

E [Vn] =

E[ (v -E[v 1)(v -E[v.1)'] =
n n n n

where V(t) is defined in Eq. (7).

Taking expectation value of both sides of Eq.

=0z +T6

Zn+1 -n 1 T.n
where zZa- E[gn+1].

The covarilance of z is defined as:

=n+l

Farg ™ Bl

n+l (

*1r+1)

It can be shown [11] that Xn+lis governed by the following equation

20

At

-+l

eAlOdo *B

<}
~
T
s

|

L=
r

(35).

—n+1

1

We get

)73,

B v(t +s)ds
1 n

ds B v(t )
1 n

(34)

(35)

is a random sequence with

(36)

(37)




So R e S T e e-x;g_m

T T
Xn+l = ¢ Xn ¢ + sznrz (38)

The predicted ensemble mean tracking error can bz obtained from the second

element of £;+1 of Eq. (37), and the predicted covariance of the tracking

§§§ error can be found in the second diagonal element of the covariance matrix

o]

i—é X_,, of Ea. (38).

= 1 B. Simulation Results

=

%f The numerical values of the parameters of this gunner model were determined
§§ in section III with respect to the gunsight dynamics system (Eq. (1)) and a

§§ deterministic target trajectory. Angular information from Trajectory 4 was

;; the input to the curve-fitting program. Since the parameters have been selected,
¥zt

S? all the necessary matrices in Section IV A. are defined. So the AAA gunner

- model is now ready to be used for computer sumulation. A computer program, OMS,
%g for simulating an AAA system with this model representing thie gunaer response

%’ was implemented. A block diagram and program listing of this simulation can be

found in Appendix D. The input to this program is the trajectory of the target
motion. Initially, only Trajectory 4 was used. The outputs are the model
predictions of the ensemble mean and standard deviation of the tracking errors.
The results for Trajectory 4 are plotted in Figures 6a through 6d. Each graph
contains empirical data, observer model predictions and P00l formula. (P00l
formula refers to a simple formula to predict tracking error used in the P00l
attrition model program [12].)

Azimuth mean tracking error and standard deviation are shown in Figures 6a
and 6b respectively. Similarly Figures 6c and 6d show results for elevation
tracking errors. It is obvious that the predictions by the P00l ormula did
not match empirical data well. However, matching between empirical data and
observer model predictions was very good. All these results indicated that
this AAA gunner model is able to represent the trend of the gunner response in
the tracking task. It was also noted that the sharp peaks in the empirical

data curves were not matched by the model predictions. This may be due to

21
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the simplified gunsight dynamics used in designing this model or au insufficient

AruEa N

ool
IRy

lidle

number of runs used in generating the sample ensemble mean data. Further re-

eyt
b

B

B

Lh'y
Tl R
O E e o

search concerning these problems is necessary. Next, this gunner model, with
the same set of parameter values, was used in OMS to predict the tracking

errors for three other target trajectories (1,2,3, in Figure 2). Figures 7, 8,

9 picture these results in the same format as listed above. All the simulation
results show that this AAA gunner model with the same parameter values gives
model predictions in good agreement with empirical data. Therefore, the observer
model is a predictive model in the sense that it can be used to predict tracking
errors of an AAA system for various target trajectories with similar frequency

= bandwidths. 1In addition, the observer model is also an adaptive model since its

2
(i
Pl

parameters depend on the gunsight dynamics and the target trajectory.

itk

"
it

i

A comparison of the model prediction accuracy between the observer mode”

e

™7
b

and the optimal control model has been done for these 4 target trajectories.

CHipHy },‘»’. T

All the results showed that both models give accurate predictions of the tracking

H

errors. Figures 10a through 10d show the ensemble mean and standard deviation

M?‘J

T

of the tracking error as predicted by the optimal control model for both azimuth

b

< and elevation tracking task. Upon comparing Figures 6 and 10, it is obvious

s
=

that the AAA gunner model (i.e., observer model) developed in this paper can

predict the tracking errors as accurately as those by the optimal control model.

The computer simulation time of the closed loop AAA system using the observer
model is only 6.5 seconds, while 37 seconds of simulation time are needed to
execute the optimal control model. Therefore, a reduction of 857 computer simu-

lation time can be obtained by using the observer modecl instead of the optimal

B P

e

control model. So this AAA gunner model based on the observer thecry is very

useful in the analysis of the performance of the AAA gun system.

arkae ¥R
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SECTION V
o CONCLUSION
=!
g’gé
%"
b3 The Luenberger observer theory has been applied to design an AAA gunner
ﬁgﬁ model. The key design requirement was to make the model structure simple so
g% that it needs much less computer simulation time than the other models. It was
3
%% also important to predict the tracking error accurately. Both specifications
;f‘
g; have been met. 1In addition, this report has presented a parameter identification
%g program which can easily determine the numerical values of the parameters of
§§ this model. Then the model is ready for the computer simulation of the AAA gun

system,

The Aerospace Medical Research Laboratory, WPAFB, has applied this model

to the study of a foreign AAA gun system. This model is now being applied to

study several other foreign AAA gun systems and SAMs. The identity observer

¥

i

R

used in the observer model still possesses a certain degree of redundancy. The

redundancy stems from the fact that the identity observer approximately con-

structs an estimate of the entire state but part of the state, as given by the

e

system outputs, are already available for direct measurement. This redundancy

can be eliminated by the use of a reduced-order observer to replace the identity

ki
i ¥

observer. Further research is continuing to develop an observer model which uses

[ N T 1)

: fewer states. This will further simplify the structure of the current observer

model and shorten the computer time. Now, to determine the parameter values

for the model, it is necessary to have empirical tracking data from a given

weapon system available. So another worthwhile extension of this work is to

develop parameter adjusting rules for this model such that the numerical values

of the parameters can be obtained without the use of the empirical data. This

project is now under study.
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APPENDIX A

A Comparison of the Human Operator Models for AAA Systems

This appendix will give a general description and comparison to the

following models:

1. McRuer Crossover Model (based on classical control theory)
2. Optimal Control Model (based on optimal control and estimation theory)
3.

PID Structure Modified Optimal Control Model (simplified Optimal Control
Model)

4. Observer Model (based on the observer theory)

1. McRuer Crossover Model

The structure of the McRuer crossover model is described in the frequency
domain in Figure 11(a). YC(s) is the transfer function of the controlled system
and the crossover model is composed of a linear element YH(s) and an random element
(remnant). An interesting rcelationship of the open loop transfer function YH(s)’YC(s)

was found by McRuer as follows:

. . > -j wT
Yy G Y. (Gw) = we ~f_

jw
around the region of crossover frequency. The two parameters(%:and Te are crossover
frequency and effective time delay respectively.

This model was developed using classical control theory, i.e., frequency

domain analysis. It is a useful model of a human operator primarily applied to

single-input single-output linear time-invariant systems with random or random-
appearing inputs.

The applications to multivariable systems or time-varying
systems or deterministic input forcing functions are not straightforward.
2. Optimal Control Model

Optimal control model assumes that the human operator behaves in an oprimal

manner subject to his inherent limitations and to the requirements of the control
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r‘HUMAN OPERATOR MODEL—
!

|
| REMNANT: CONTROLLED SYSTEM
l
i !
4 INPUT 4 ~8T . 1Y -
=i ' Y H (iw) L.f-é—l-. YC (jw) -
o |
. b ] !
ig ’ (8] MCRUEH CROSSOVER MODEL
i OBSERVATION
o - ERROR _ ﬂ
fatl e g ' ::R
% T A TIME 4 KALMAN
| —*—é}—~ oeLay [ rilreh ~{PREDICTOR |

NEUROMOTOH
| NOISE

OPTIMAL +é NEUROMOTOR u
CONTROLLER + DYNAMICS

(b) OPTIMAL CONTROL MODEL

OBSERVATION
NOISE

er + At | KALMAN OPTIMAL u
FILTER CONTROLLER

(c) PID STRUCTURE MODIFIED OPTIMAL CONTROL MODEL

REMNANT

er | FEEDBACK __Qg'__‘“
- OBSERVER CONTROLLER [

(d) OBSERVER MODEL

FIGURE 11. BLOCK DIAGRAMS OF HUMAN OPERATOR MODELS
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task. Kalman filter is used in the model to obtain the optimal estimation of the

state of the dynar  _ystem. Then the optimal, linear, state variable feedback

o e on b WA

control is implemented by using the estimated state. The block diagram of the
model is shown in Figure 11(b). Optimal control model is bjsed on the state
space techniques to describe the dynamic system and hence is convenient to be
applied to multivariable systems or time-varying systems. So the bptimal control
model is a good gunner model for complex weapon systems. The problems of the
optimal control model are summarized as follows:

a) The structure of the optimal conirol model is complicated. There are
two Riccatl equations (which are nonlinear matrix differential equations)
involved in the model to be solved. Therefore the computer execution
time to generate model predictions of the tracking errors using optimal
control model is lengthy.

b) There is no systematic method to determine the parameters of the optimal
control model. Usually it takes a2 long time to modify the cost function
or model structure in order to obtain a set c¢f parameter values to give
satisfactory model predictions. Generally speaking, these parameters
are determined through trial and error.

3. PID Structure Modified Optimal Control Model

The PID structure modified optimal control model is a simplified version of -
the optimal control model. 1Its structure is shown in Figure 1i(c). Obviously, it
is much simpler than the optimal control model. 1In addition, this model assumes
thatthe human operator learns an input-output type of internal model relating the
human's control u(t) to the displayed variable eT(t) (i.e., input to the human
operator), without using any explicit representation of the actual system dynamics
and forcing functior. The advantage of this idea is to have simple mathematical
equations for the model. The disadvantage of this formulation is that it may be
difficult to tune the parameters effectively to obtain accurate model predictions.

Another good idea in this model is the consideration of the lower order
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internal model of the controlled plant. But this causes the divergence of the

covariance matrix of the Kalman filter. Further study is necessary in order to

’

use this idea successfully.
4. Observer Model

Two of the main design requirements in the development of the observer
model are:

a) systematic determination of parameters of the human operator model,

b) simple structure of the model (this shortens execution time in the

computer simulation of an AAA tracking task).

The Luenberger observer theory was applied to develop this model and its
basic structure is shown in Figure 11(d) for comparison. In this figure, the
observer plays the role of the Kalman filter and the feedback controller plays the
role of the optimal controller. An observer generates an estimate of the state
for a dynamic system. Its advantage is that no Riccati equation is required to
compute the observer gain. (ote that in the optimal control model to compute the
optimal Kalman gain, a nonlinear matrix differential equation has to be solved.)
Similarly there is no quadratic cost function involved in the formulation of
observer model. Only a linear state-variable feedback control law is used in

this model. Hence, the structure of the observer model is much simpler than that

of the optimal control model.
In addition, the parameters of the observer model are not determined by
trial and error tuning. The developed parameter identification program (i.e.,

least squares curve-fitting program) in Section III can identify the parameters

systematically.
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APPENDIX B

Development of Gauss-Newton Gradient Method

Consider a scalar function J(a) of a vector parameter a and ics first
derivative 3J(a)/da. Taking first order Taylor series expansion of 9J(a)/da with
respect to a minimum a* of J(a), we have:

3J(a) 3J(a*) 3 J(a*)

= + 7 ' [a - a*] (B1)
da 3a 9adq

The first term of the right hand side of Eq. (Bl) is zero because a* is a minimum
of J(_z_z_). Now, if the second derivative of J(a) with respect to a at a* is not
singular, ther Eq. (Bl) can be rewritten as follows:

2
3 J(a*) _ 3J(a)
#=a- [—1h (——) (82)
dada da

Eq. (B2) can be used as a basis for an iterative relation to obtain the minimum

of the function J(a). The iterative relation is given by
2 -1
J
. o 3 J(gi) ) (ﬁi) (83)
vl A

BQBQT da

This is the Newton gradiant method. In order to satisfy the descent property,
i.e., J(ii+l) < J(gi), a one-dimensional search for pi is performed,to adjust the
step size of Increment in the iterative procedure. Newton method can now be

written as: __ -1
9 J(a,) 9J(a,)
—i —1i

a,..=a, -p, (B4)
—i+l ~1i i

The Gauss-Newton technique is an attempt to obtain convergence characteristics
that are similar to the Newton method without calculating the second derivative

of the criterion function with respect to a. Consider a known function fl(x) and -

a second function f(x,a) where a is a parameter vector of dimension p, to be

determined in order to minimize the criterion function:

48




.,:?;m

o | |
ey

S A

T

gt

Ao i

h
L

Where Xy xf are integral limits.

Xf 2
J@) =/ " [, (x) - £(x, a) ] dx
Xo

X
J@) = [/ | £,00) = £0x, ag) -
X9

ef (x, 30)

da

or simplicity we will assume that fl(x) and f(x, a) are

2
(a -2, ]dx

(B5)

Take a first order Taylor series expansion of

f(x, a) about a certain initial guess a, and substitute into J(a).

(B6)

acalar functions of x

and (x, a) respectively, and a is a p dimensional vector.

function J(a) can be rewritten as:

Now the scalar criterion

xf 2
J(@) = f {(f, (x)-f{x,a ))Z-Z(f (x)-f(x,a )) 3f (x,a,) (a - a,) A (x, 2,) ) }dx
8=/ 2, 1 80— 73— a- g,
0 da da
(87)
Taking the partial derivative of J(a) with respect to a, we get
5J(2) xg DE(x, a,)  9£(x, a,) 3 (x, a,)
= 7 “2(f,(x) - £(x, 3,) ) +2 (a-a)——— | dx
da o da 3a da

T e R P

Xf af(x, éo)
_— 402

da

=J

da X,

-2 (f1 x)-£(x, a,))

of (x, a,)

da

Note that the gradient of the criterion function is zero at its minimum a®.

0J (a*)
0= - =

.

3f (x,a,) ‘
(a*-a ) — 1| dx
0a

(39)

So taking the transposition of the resulting equation gives us

T

X of (x, 30) T Xf of (x, ay) T 9f(x, io)
; (————) (fl(x) - f(x, 30) Ydx = [ ( ) (a*-a,) dx
Xy %a X, %a fa
(B10)
For the discrete time case, the analogous result is:
K 3f(x,,a )T Ko 3f(x,, a) T 8f(x,, a,)
T () (£, () = £ 200 ) = T ( R ) ) (a*-a,)
k=l  da k=1 %2 %
(B11)
49




s R e S R R A B )
g5 %
aa - Hence, -
:’i
] K /36 ,a,0\T B£(x ,a,) S [efx ,a\T
»2 7 a* = a s K20 Kk’= §1 k’—0 fl(xQ-f(xk, io) (B12)
s k=1 da da B oa .

P VA
A

The iterative relation 1s given by:

-1
_ K 8f(xk,g_i) T 3f(xk,§i) K[ 0f(x,a)\T i
2, =2 |2 ] = (£, o2, )E; () )
i+l A k=1 a_a; 3_:_1_ k=1 3_a_ =

(B13)
In order to satisfy the descent property, i.e., J(§i+1) < J(gi), a one dimensional

i
sear~h for p is required. Thus the modified Gauss-Newton iterative relationship

is expressed as: -1 .
Ko /080, 0\T (3 (x,»2,) Ko /3fx,a N -
24 =3 P2 Il ) (E(xpea)-f (x))
k=1 da da k=1 da

(B14)

Let the second term of the right hand side of Eq. (Bl4) be denoted by + pgi
b
then:
Bip T3 PR

Initially p = 1. If the descent property is not satisfied than p is halved. This
process continues until J(§i+1) < J(gi) or a lower limit is reached. At each
iteration p is reset and the criterion function is again checked.

Let
(D.).
g, = 1

3
(_a_i)j

for j =1,2,.... p.

where (Qi)j and (gi)j are the jth components of Ei and 3 respectively. The
convergence of Eq. (Bl4) is established whenever
lEj| <€ for j = 1,2,.... p.
where € is a preassigned small positive number., Otherwise, further iteration is
required.
Following is a flowchart for a computer implementation of the modified %

Gauss-Newton method.
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READ:
F1(I)=SZ (»)
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APPENDIX C - PARAMETER IDENTIFICATION PROGRAM

A. FLOW CHART OF PARAMETER IDENTIFICATION FOR PARAMETERS ASSOCIATED WITH MEAN
TRACKING ERROR EQUATION

INTTIALIZATION:

F3O=SEI?§T(N’30)

SIS

‘q’
it

i

R

Bo= Séirzy(m9gn)
3a(k)

2
Jo(@=1L) (FL(1)-F3_(1))?

R

s

kit o es

R

2

¥

R

o R Rk

R

A SRR

[

w

L BN S SR A
R

&

5
!

CALCULATE

D,
5,

a =a +
Pi4l oy PR

UPDATE: F3i+l
B

Jin

i+l

CHECK:
p < LIM1

STOP
ERROR 1

WRITE:
8;48nd J

B

£ it )

i+1 Ji7J14

CHECK:
i < LIM2

o R A
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COMMENTS: EXECUTION OF PROGRAM FITI1
1. COMPILE PROGRAM
2. INPUT: ATTACH TAPEl1 AND TAPE2 where

TAPE1l CONTAINS EMPIRICAL STANDARD DEVIATION OF TRACKING ERROR

TAPE2 HAS PARTIAL DERIVATIVE INFORMATION (described later in SDCON)
3. ATTACH D.L. KLEINMAN [13] LIBRARY

SUBROUTINE - GMINV, VMATI, VSCALE

4. RUN

5. OUTPUT: PARAMETERS VALUES FOR [al, Ggs a3]

™
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B
:

TH Ty
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H
=
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T TPROGRAY rII‘INPUT,OUTPUToTﬁpﬁloTAPEZ)
1 PRINT’,snFrYDE 1 70 60 3% TYez g 10 ST0P
READ», IFG
IFt1FG,EQ,D)STOD
T T REWIND [ ’
REWING 2
TCALL INIT
60 70 .
<ND
SUBROUTINE INIT
INITIALIZATION 20UTINS
READ IN DATA Y0 8: FITIID
MAKE INIT 1AL AU.Sss3
CO""ON/VA‘/LT”leZH?;EZQHQNoPEL
CUHMDN/WAT/F1'112§).F2(11?539c3(1125,1ﬂl3’1Aﬂ(3)yﬁ'112503)90(3)
DAT N1H113/11250.0593/
PRINT*,304 TYos: 11 LI”l,LI*z,:i
RE“O‘tLI”l:LINZ'E?
PRINT*, 34 “3."'5HL111=9qulgsuLIP2=9LIH293H:ﬁ='EEsSHIF=~I°
Hzy Q4
90 10 I=1,)
READ(143) 2,28, F1(T), 22
FI(I‘=:1(I3‘=1(I)

3 FCRMAT(4G12,3) .
RSA‘J(Z,#)FE(I). (812,00 ,421, [} Note: Matrix B is computed in a seperate

: routine SDCON (listing follows)

'1’0 ggz:;;s'__‘“z"' . since B remains constant throughout

PRINT\50LTYSZ 10 INITIAL SupSSe-to5 L, 2 b8, dtsgation process.

READ* ,AA

PPINT,10r 137 507S5,48

dFL=g

CALL COZF (34,19)

CALL JMIN(1J2)

PRIKT®, 15+ J4Iv(y1)= 12J2

CALL L90P (3J2,12) :

iND

e~ ———— -

xR+ N

SUBROUTINE J4Iy(]y)

C - COMPUTZ Ry=z52IT R Igy FUNSTION
COWYON/VA:lLIHI.LIWZ,E:sHvdeiL
CO"FONIWﬁ’/=1(112E),F2(11253'73(1125),5(3),AA(3)¢?(1125.3)'3(3)
SyM=3, ’
00 1) 3=1.4

10 SUN=§U*+(F1(II-F?(I))“?

RJ=Sym
tND
SU3ROUTINZG 9912
c CALTULATZ ) vavary FICM ) ANp 2

OIMZNSION 3 N02,3) 0103, 3)
COH”ON/VB=/LI”10L143’ZEyH119C3L
COﬂH?V/Hﬂ?/Fi(ll??)‘F2(1125|,‘3(1123).A(3)gAh(3)q6(1125.3190(3)
COW”ONINAIVI/VDIM.NQIM1;3011(515)/IN0U/<IN'KOUT

ANCIM=IOINCT 41224

KIN=X0uT=¢

00 12 1=1,1p

R‘I’gog ] _ N i
a6 13 ysq,1a . (- in ALENT ER2RMGADIS
10 GtI, n=0, WL Fae 2T TG TOE
0C 35 k=14 Al JaPY For® 00
Ck




~N -

130

30

26

40

[ X0}

14

SN=F3(K)=F{ (L)

6C 33 I=1,IP

L0 23 J=1,1°

ClI,Jd)= Q(l'll*1(KoI)’1(K'J)
RUII=2(I) +3 (N, TI®5Y

CONTINU:

CALL GMINV(I2,12,0,%1,42,0)

vALL VMAT {tWL,9,15, 12,0)

CALL VSCaLi(d,d,I5,~1,)

+ND

SU3RIUTINE LI22(7y2.,1P)

ITZRATIOIN 2302358

COMPUT. A(I¢1)=A(T) 45 L*3(D)

OCTZIMINT 447 a(I+1) TS AZCLPTARLS

JIMINSION DDt

COMMON/VAR/ZLIMLLL 12,0 1Mo 021

COMMON/MAT/FY (112, "(112))o73(1125’.ﬂl3).ﬁﬁ(3).8(1125'3)g0(3l
NCT=MCT=0,

CALL DI(IF)

ud 13{ I=1,1>

U(I)=0(3)*)3L

AlI)=LatI)e vty

Chib. COTF (1)

CALL JMIN(UD)

IF(RILLT, 250 1) 36

JIL=DLL/2,

NCT=C"+1

AFINSTSLI,LIMEYG0 TO 2

PRINT®,7uc290 1,14 2203374 NCT2 0Tl H MCT=2,M2T,541,592
LY0P

20 30 I=1,:?

OO =335(D(")/7aa¢7))

IFL2IT(IN 45T 206N *n 25

GC TI -0

HuT 1?7’1

sF{MST L LIM)50 Th ¢

PRINT®7HERRD® 2,14 B2,4,749 N2z ,h07,5H MCT=zMCTPJL,RY2
$70°

kJ2=341

NCT=

JEL=1.

Lo 25 I=1,12

wA(T)= ﬂ!I)

60 T2 ¢

FRINT‘Q#H A=01.~“.I‘T- ‘]h ’-H“br 7

ORINTE IHLAZ, 24

PRI“T'|3H ’303

PEINT®* ,BH T 1=, U1

LMD

SU3RIUTING 29-8(w,12)

CCMBUTZ FLISTION €fu.8) GIVEM 24%8Me TZRS A
PAATIAL DBIRIVATIVIS oF TICA4B) ACT A s3: IN MAT=IX 2
vIMIUSTION A(IP)

COMMON/VBR/ZLIML.LTN?,2 7y, Ne[L.L
COMMIN/MATITL(L127) T2 (1L" 2o1,T3(1125),203), La(3),303123,3),3(3)
00 13 I=1,49
F3(I)=‘2(l)*G(Tol)‘“(‘)*i(;.2"”(“)4 S(I.3)20(3)
CONTINY.
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B. FLOW CHART OF PARAMETER IDENTIFICATION FOR PARAMETERS ASSOCIATED WITH STANDARD
DEVIATION OF TRACKING ERROR EQUATION

READ: INITIALIZATION
F1(1)=SDT(C)I=1,..-,N F30=P2’2(tsho)
F1(I)=(F1(1))*? B =HPy »(tsb)
bo(K)quyayas] ab(k)
k=1,2,3 N
=T o 2
i Jo (®IFL{F1(T)-F3_(1))

%

CALCULATE:
DD;
bypy*Ri+obD;
UPDATE: F3,
Ji41
Yes No
: B 14199
H _ Yes CHECK: STOP
p =79/, - 0 < LIMI ERROR 1
rYes / D; (k) <€ N\ No
Y\ (Ri(k) /
WRITE: UPDATE:
b, =1
=i+l §.= 3 CHECK:
Jin1 i 7iHl 1< LIM2
%= b1
i=i+1
!
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COMMENTS: EXECUTION OF PROGRAM FIT

1.

2.

COMPILE PROGRAM
INPUT: ATTACH, TAPEl and TAPE2 where
TAPE1 CONTAINS PSD UF EMPIRICAL MEAN TRaCKING ERROR
TAPE2 CONTAINS PSD OF éT FOR GIVEN TRAJECTORY
ATTACH D.L. KLEINMAN [1 3] LIBRARY
SUBROUTINE USED - GMINV, VMAT1, VSCALE
RUN

OUTPUT: PARAMETER VALUES FOR[Y ,, k> k) |
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TR 1.%,1);‘1

OO0

2C
25

10

“READ¥GEFE "~ T T

PROGIAM FIT(INDUT,OUTPUT, TAPEL,TAP-2,TAPES) . TR
PRINT*,50HTYPZ 1 TO GO OR TYPE 0 TQ STOP

- emen s Swe- & Swasn - -

IF(IFG.EQIISTO® :
REWIND 1 _ e e ————
REWINC 2 o ' .

CALL INIV T . e
G0 70 1

&ND - - - - - m- O - - v - e e e —— e SRS 80 e

SUIRDUTINE INIT ) ’
IMITIALIZATION OGUTINE =~ T Tt T T Ty
READ IN DATA TD 3L FITTZD

MAKS INIT IAL 6GU:ISS T T ’ - Tt T T
COMMON/VAR/LIML s LIM24E59IPHoN,DEL
SOMMON/MATZFL(S13 4721513, F2(512),51(3),AA(3),8(513,3),D3IY """~
DATA NoeHeI2/51344¢02+41,3/ '

PRINT*,30F TYOE IN LIMA,LIM2,.2°

RIAD*,LIM1,LIM2,357

PRINT® o3 1248y 2HHz yH SHLTA1=,LIML SHLIM2= s LIM2,3HEE2,E2, 3HIPS,IP
GO 10 I=1,¥

READ(1,3) 2,FL(D) oot ) -
RLAD(2,4) 2,F2(1)Y
FORMAT (1X 42612, )

FORMAT(1X 42612,5)

e ¢ e s o A p—

CONTINUZ .

PRINT*,30h 2INT FIRST nuiEss

READ*,A4 R - - T e
PRINT*,10 b 157 5UZSS,4A4 i

DEL=1 ' e - . e e

CALL COTF 1aa) ,
CALL JYIN(RJ2Y oo ‘ S e
CALL LJ0? (Ry2) :

Frz =0, ot T om - LR R - o
00 20 I=t1.d

WRITZ(6423)FRIFI(IY ~ ) e e o
FREA=FRIQ+4

FORMAT(2612¢3) T . e e
LND ,
SUBRIUTINT MINRD ™ 77 7 P
COMPUT. 3 JU=CRITIRTIM FUNCTION

COHMON/VAnlLlli._*qz,“g,Ic,u,q e L -
COMMON/MAT/FL(513),F2(513)F3(513),4(3),AA(3),8(513,3),0(3)
SUM=), T v

00 10 I=1,1

SUM=SUM+ (FLTI)=F37Tyys*> ~° = R s
RJ=SUM

END

SU3RIUTINI DD

CALCULATZ ) MATRIX FROM Q AND R - C -
CIMIISION 203)49203,3).W1(%,3) o
COMMON/ZVAR/UIML, LIM2, 289 IPy AN IEL . R
COMMON/MAT/FL(513) ¢F2(513)4F3(513)44(3)9AA(3)93(513+3),0(3)
COMMIN/MATIL/NDIM JNNIML,COM1 L3, 3)/INOU/KIN,(0U' —— -
NOIM=35NDT11=4 ,

KIN=XCUT=6 = = - - IR
00 13 I=1,I? ‘
R(I)=0. e e as b wea Qﬁnﬁﬁ?ﬂ' . - . e e e ses  emm—

t ¢
Lo 13 J=1.L=”ﬂ,m?wmmﬂﬁ

LV “TOS s AR A ¢ i - A T w80 W TR N A O = R 9 S T T T T T . /
b
‘ : N .
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30
35

OO0

39

20

Lo

45

AAT)=ALIY

Q(I,J)=0.

0C 35 K=1,1

SN=F3(K) =1 (K)

50 33 I=1,1>

00 25 J=1.1°

GII =0 Ie 1 +3(K T2 (K, D)

<{IN=R(I) +3(K. IV 2SN

“CONTINY_

CALL GMINVII® I2,N4%1,43,0)

DALL V‘“\TI(HJJQ!ID'ID'D‘

CALL V3SALI(2,3.12,=1.)

£ND

SU3IRIUTINET LI02(3y2)

ITSRATION 207138

COMPYT:E A (I+t)=alT)+3iL*I(7)

CETSRMINT AHIN J{I+41) IS A33iPTaRLS

LIMINSION 3203 ;
COMMON/ZVAR/LIMAWLIM2er o IP v, M, 02 L
COMMON/ZMAT/FLI3123)4F2(5313)sT23(512)4A(3).A(3)+3(513:3),0(3)
NCT=MCT=D,

CALL D)

U0 136 I=31.I°
d(IN=d(I)*-L°
ALT)=AA(TI) (D)
CALL CI3F (1)
CALL JYIN(UID )
IF(RIZ,LTL2J2)6D 7O 32
osL=lIL/?,

NCT=NCT+1

IF(NCT LoWLIMNIG) 02 - o
FPRINT#¢7HERIY 143H Az A, T4 NOTZ NIT,5H MCT=,M0T k1,502
STOP

00 37 I=1,i>
DOD(IN=ARS(I(INIZAA(I))
IF(DI0(I) o3Te 2160 TG 2)
60 TO 0
MCT=MCT+1
IF(MST,LZ.L342)50 TO S o . ) o
PRINT*,7HZ203 2, A=, A, 84 NET=,RET.5H MCT=0MCT,9J1,Ry2
STOP
RJ2=RJL
NCT=0

OEL=1,

00 25 I=1,I°

- e .- - - - - e -

- e r e A - .+ = - - - o on =

e cave e . s e W mm e % m GRGeE SMA WAL S e ————

GO 70 L
PRINTCS, CATI) 151410V 4NCT 4 40T
PRINT*,3HAA=, AN
PEINT®*,3H J3=,)
PRINT*,5HJMIN=,RJ1 —g19.PAGR 1S BEST QUALTYY PRASSIMSSIN
FCRHAT(lXJGi?.i.ZX;ZIS)r ] FEOM C4: ) ’“I“Smmm FUP-C N

. vme e e e - me ce - - - e mm———— o a e VE—————
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ENO

——— o = ve w emmer ci e s ee weae

" SUBROUTINEG CO:F (W) - - . . e

COMPUTE FLIC T{Qjaf3(wléL_G;v N PARAMzTERS A

TEXPRISS PARTIAL DIRIVATIVES OF FP({W,A) WRT A IN MLTRIX 3
ODIMENSION (3

TCOMMONZVARILTIML, L IM2 25 2P, Hytt D2 L
COMMON/MAT/F1(513),F2(513),FI(513),8(3)4AA(3),3(51343),0(2)
AT (B,4,R7=3%X" - - )

A2(P,QyR) =2A+R+P*Pa2, %)

A3(P,0,0) =T%Q3P3pIR¥T.2, #pedug

At(P,Q,R) 22%17
PI=2.‘-301“153
WH=FRL3=0,

0C 10 T=1 N 7
TNL=(AL(N (1) o W(2) 4N (3))2*2)

SNSWAFWH® (AWSWNFAZ(MIL) HT2) ol () )¢A3(W(1IW(2) H(3)))
SN= (WW¥¥8 ) +SN+ (Aq (W{1),W(2),H{3))%>2)

TNS(AL(H( 1) A (2) W33+ )% (HWEWH+TNT)

FI(I)=TN*=2(I)/ (TNL1*SN)

BII L) ZAUPANF (AAFTHAXU(L) e W(L) P (A(I)*H(3)=2o*¥NW(2)))
SUIy1)1=TNL4(3(T o 1) +AIRIL),4(2) yW(3)I*H(2)D+AL (W14 H(2) W (3))eSNI
SNISAL(H (1) s WI2) S Wi )2A (WIL) s W(2) s WI3ID+H(2)® (HUSHH+THT) i
SNL=(SNL*THL*¥A0(W (L), W(2) 4 A(3))*SN=-TN*3(T,1))*2,*F2( 1) 1
6(I,1)=SN1/(TNL=TNL*SN*5N)

BUIo2)=(HWAAN® (~HH*IN+W(2) = wti)‘W(l))#An(ﬂ(l).ﬂ(?),H(a))‘utl))‘TNl
BT 2 = (ACtMTiT, W) WIS IBWTL) * (AP UNCTNL) *SN=E(I,2)) %2, *F2 (1)
B8(1+2)=3(1+2)/(TN1*SN*SN)

.
- rwn pm mm ama mm cm mn eme mm e o' . em e

BT ZAL(ATL) oW1 2) s WIZ) ) F AW WS (W) *WHAWHW (L)W (L) *W(3) ) =SN

|
]
{
BtI.3)= *(A¢(W(1)_9"(")9”(3))“2)‘7N1‘SN-TN‘B(1.3) [
BlIe3122, %T2(IV BT 31/ (TAL(NILI yW(2)4W(3))*%3) *3NASH) [
FRcQ= FR;‘.Q’H i
WW=PI*FRC -~ = . ’ ) ‘
CONTINUF [
£ND 1

|

R218 PAGE 15 BX52 QUALTYY PRASSIGANLE
PRIM COrY £uu%: o885 T UDE
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%f
- COMMENTS: EXECUTION OF PROGRAM SDCON

1. COMPILE PROGRAM

2. INPUT: ATTACH, TAPEl which has TRAJECTORY INFORMATION

. . .

O, Op, Op, Op, by, 0

3. ATTACH INTERNATIONAL MATHEMATICAL & STATISTICAL LIBRARY (IMSL)
SUBROUTINE USED - VCONVO

4. RUN

5. CUTPUT: TAPE2

PARTIAL DERIVATIVES OF P(2,2) WITH RESPECT TO (al, Oy s a3).

60

R

>




PROGRAM SCION{TMPUT,QUTOUT,TAPSL,TAPER)

DIMENSION A(4093) ¢81(102:)43(2046),IWK(12),0(9,2),F2(1024),2(102%)
DATA 0/019'1077--10 3v‘-o83’10£-v,’1c2,-2‘:1130. 10-759.'59'103779°10889
1 Ue 6305 le339,041580014eln/

N=10243D2L=,3%

c TAPZ1 IS TIPU'T TAPT WITH TaJICTCRY INFO IN DIGPLiS

C777 TAPE2 IS CUTPUT TAPT2 WITH BARTILL DLtRIVATIVES OF P(2,2)
c IC=1 FIR AZIMUTH AMD IC=7? FGR SLiVATICN

T 7T READ*.IC

€ AtDIz0(2,d) AL(I)=0(2,44)

(¥ V=P14F2% (€T J0TI* (0T DOTI+P3(NT COTI*(OT DDT)

c Fz(1»=o(1.zn‘a(1.1)

TTTTT DO 10 1Is=1

T= (101)‘Dc-
A(Trz=2X09 (33, IC)'T)*(VOD(,(~,I‘)~T>vc(;.!C)*;Intc(-.I")-T))
A(T)zC(1, I3 (SXPLC(2,I2) 5T =A(T})
AL{D) ==X PIC(3, LCI*T)I*(COSIS (g IC)I®TIS4C(7 4ICI*SIH(C(L,IC)*T))
F2CII=A(II*A(T)ISAL(TII*AL (T +(IXC(G(2,ICI¥T) ) +2
TATI=ALUT 12R28 FALTIRA(T) =0 (3, II*A(T) *AL(T)+3(9, IC) * AT *AL(T)
READ(1,5) CT43(T)4C(I),Z, :Ny20)
IF(IC.2Q. 1060 T2 &
8(I)=5D
T 01TiscOb
6 BII)=R(I) *3(T)
TIDI=0(D) ¥
10 CONTINUE
B T FORMAT(6012.4)
c PARTIAL OF P{2,2) W27 P2
o CALL VCONVI(A,3,N,N,TWK)
00 100 I=1,4
TBin=0ID)
S(I=atD)
100  A(Ii=ALtD)
c PARTIAL O- P(2,?) WRT ®3
"CALL VCINVI(A,8,N,4. THK)
.00 20 I=1
“AA=AL (D)
AL(T)=A(T)
TA(I)=AA
20 B8(I)=1,
€~ TUUFARTIAL OF P(2,2) UST Py
CALL VCONVI(A,3,M,M.IHK)
G0 39 I=1,1°
30 WRITZ(2,4)72(T) £ {T)4N(I ).A1(I)
1 FC’MAT(MGi’.))

+1 ?ﬂf"‘“

. . r\'.j.ﬁ}ti
15 rea X -
:}':s rhi e }Sﬂm 2o
61
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APPENDIX D

INITIALIZATION
1. Choose AZ, EL, or both
2. Type in parameters al’a9’u3
4. Flow Chart Of -
Simulati Progra AT
U on & n*B. Set up Al, compute ef hand?e 1dr
o

4. Calculate I ,1 :

5. Initialize time, state variables,
and covariance matrix

4

Read Trajec-
tory Inform-
ation

5T n

A
- 2
vn (§1+QZOT

2
+a36T ) /DEL

- T
Xn+1 —(an(b
+T 9T vy,

WRITE:
Zn(2)
and%Xn(2,2)

Yes T

ANl
=)

—

R A

2
X
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COMMENTS: EXECUTION OF PROGRAM OBS

1. COMPILE ROUTINE

2. INPUT: ATTACH, TAPE2

where TAPE2 HAS THE FOLLOWING CHANNELS:

L] .o .

Ops Ops Ops Ops 00> 97 FoR A GIVEN TRAJECTORY

3. ATTACH D.L. KLEINMAN [13] LIBRARY

SUBROUTINE USED - DSCRT

gg
.

RUN

i
w“ £~

L0

i

OUTPUT: TIME, MEAN TRACKING ERROR, STANDARD DEVIATION

A S AR A

i

BPARS

e

A

R P e Sy

Wy Py

W

i

@ .?&“'”.{ ’,Wi
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PROGRAM G33(INCPUT,OUTFUT,.TARE 2) o T
OIW-V,ION -'& 4,'?)q?(*)QX('TQ-Q)’pl(‘-)odl‘wy'-b),dZ(%,L.),

§ P(3.2) — T e s s e s ot e —
COM%ON/MA I'\Ji/’\h‘lé )

c TIMZ3 0. - <3, TIMP §Tas=.fc T s
P = LAMDAiy LA‘UAZ, Ki, X2, 0T 007

GATA DIL, Ny TIND/L Jusidyeb./7 ’ T T
CATA F‘/‘ioy’l 7:92‘.7.160"‘,0-9 1.1 10;:1,2 'y3 70-0 /
N1=N*N o

N2=N+1 i ; N _
L71:1 : ’ ) - 7 T T T e
L2=2

'ﬂ%%‘-,.
VM

o v e o
(o]

. ammce——me e s . ———

e s

R R

PPINT*,50F TYPZI 1" F0OR A7 FOR €L 3 FOR BuTW ~ 7 7 T T
READ*IFG o L
F T I I T T T
IF(IFGsEQe23L1=2
c IC=1 FG &7% wvr 1 TANDTIC=2 FOR ELEVATION o
00 500 IC=L1,L2 o
REWING 2’“‘*"““"""“' T T T e
c P1,P2,°3 ARi SOJFICIINTS ASSOCICATED WITH NOISI COVARIANCT Ve
PRINT¥, 200 TY3Z IN P17R37R3™T —7 7 P S e e

>
READ*,P1,F2,03
¢ INITIALIZE VECTS
00 13 I=1,41

ATDIES. T S T T
16 x(I)=0,

e R

w2Y=1+P (VIS T T T T T T

A(3)=2F(2,1I3)

A(10)=-2T1,1IC T T ) i T T T

AlL4)==P(2,13)

A(153)==2(3,1I3) T T - )
= A(12) =1, ) . i

A(16)=-°«~.fcf
CALL OSCST(NyA, 2L, W1, w +13)
Wi= TxﬂNsLTLow MAT2IY 2=INTZGREL OF TRANSITION MATRIX
JJu=1
00 65 J=53 .3
Ji=J+¢
Ri(JIy==H2(J)=W2¢J1y "~ 7 7 o oo T
Jdz=Jdtt
00 60 I=1.1
Z(I1=0y" o
00 ol J=1.%
&6 A(I,J)‘Ql(')*Q‘JJ)‘ o o

0o 23 I=1,4 T T 77U o T T T

II=I+2*N
20 KI(I)=W2 (D +W2(II)*¥ (1-2(5,IC))
T=0¢
READ IN TRAJZCTORY INFO FG2 AZ AND L IN DEGRZZS
READ(2,3) (P(I41),I=1,3)4(P(1,2),1=1,3)
FCIMAT(5G12,4)
COMPUTZ &STIMATSC OT 2T AN OT COT

sl

W T
(o]

i3
T

(o
ar

O wr O
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N Gy ot T ladiie S ety

Poz=Z(3)=7 (1)
PE={PuePPy) /2L
1F(T42240,)P522(2,13) ‘ "
c VENOISI CCvaravsr ' .
VE(31%0u4F,eD2¥05%054£3) /DZL ' )
PPuy2Pe
c coMPYT: .-av STATE ZQUATION
00 23 I‘A. ’
“2‘1’380
11=1
DG 15 JsI oVl
W2(I)=W2 (T2 +H1(J) *2(ID)
15 II=II+1 i
25 CONTINJZ

Lo 33 I=1.,1

Z(I)= HZ(I)'Ql(I)"(3!IC)
35 CONTINUS = = =omm=idm=om me coe o e e e e e em e vee e e
c COMPUTZ COVARIAILT MATRIX JF STA. -QUATION

CALL MULT (41, X 4, NL W2 7 ' T
G0 &d I=1,.\1
L0 Xt=A(I)*ysd2y -~ - 70 T
SP=SQART(X (2,2)) ,
TaTediL <t e o= ; ) e eae e
MEAN TQAC«;N: 23RO IS 7(2)
VARIANGI C€F TSATKING £RRO® IS X(2,2) T
PRINT OU'FJT AT IVIRY SICOND
LK=(T+, 0007037 ' R
: IF(MICILK 425) 4 S0 0) PRINT7E 4 742(2),5)
75 FoawAT(;x E173 S 29 D oo T
IF(TaGE. TENDIGD T =00
G0 TO 1 )
500 CONTINUZ
END o i ) )
SUBROUTING MULTIZ 7 ylyLish)
DIMENSINN (Ll!.‘(LIJ GULEYSH(LL) ’ : o
00 13 I=1..
1I=1
0C 13 <=1,
TEﬂ°=d. - ’ cT -
60 2 J=I,L1’L
TEMP=TIMP+I{N S#IIIY - — ° ~ . T
8 11=11+1 ) i _
KKz (K=1)* (]
10 GIKK) =TTNF
00 22 Is1,. ~ T T4 T -
00 20 =1,
TEMPR Oy o T e e e I
11= -
DO 13 J=2i,ul,. T T : . T
TEMP=TIMO #3()) %z (II)
1y II=II+L
KK= (K=1)®#L+]
20 HIKK) =TSYE e
L2=L-1
ul 33 I=1,.2
L3=1+1
00 33 J=L 3L
Kiz(I=-1)*L+J
K2= (J=1)*(+I
30 HIKL) =dlK2) )
e ND : o7

(2 Xy X )

65
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